
-symmetric extension of the Korteweg-de Vries equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 F153

(http://iopscience.iop.org/1751-8121/40/5/F02)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/5
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) F153–F160 doi:10.1088/1751-8113/40/5/F02

FAST TRACK COMMUNICATION

PT -symmetric extension of the Korteweg-de Vries
equation

Carl M Bender1,2, Dorje C Brody3, Jun-Hua Chen2

and Elisabetta Furlan4

1 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2 Department of Physics, Washington University, St Louis, MO 63130, USA
3 Department of Mathematics, Imperial College, London SW7 2BZ, UK
4 Blackett Laboratory, Imperial College, London SW7 2BZ, UK

Received 4 October 2006, in final form 5 December 2006
Published 17 January 2007
Online at stacks.iop.org/JPhysA/40/F153

Abstract
The Korteweg-de Vries equation ut + uux+ uxxx = 0 isPT symmetric (invariant
under spacetime reflection). Therefore, it can be generalized and extended into
the complex domain in such a way as to preserve the PT symmetry. The result
is the family of complex nonlinear wave equations ut − iu(iux)

ε + uxxx = 0,
where ε is real. The features of these equations are discussed. Special attention
is given to the ε = 3 equation, for which conservation laws are derived and
solitary waves are investigated.

PACS numbers: 03.65.Ge, 02.60.Lj, 11.30.Er, 03.50.−z

Many papers have been written on theories described by non-Hermitian PT -symmetric
quantum-mechanical Hamiltonians. To construct such theories one begins with a Hamiltonian
that is both Hermitian and PT symmetric, such as the harmonic oscillator H = p2 + x2. One
then introduces a real parameter ε to extend the Hamiltonian into the complex domain in such
a way as to preserve the PT symmetry:

H = p2 + x2(ix)ε. (1)

The result is a family of complex non-Hermitian Hamiltonians that for positive ε maintain many
of the properties of the harmonic oscillator Hamiltonian; namely, that the eigenvalues remain
real, positive and discrete [1–3]. The properties of classical PT -symmetric Hamiltonians have
also been examined [4–7]. However, there are to date no published studies of PT -symmetric
classical wave equations.

The starting point of this paper is the heretofore unnoticed property that the Korteweg-de
Vries (KdV) equation,

ut + uux + uxxx = 0, (2)

is PT symmetric. To demonstrate this, we define parity reflection P by x → −x. Since
u = u(x, t) is a velocity, the sign of u also changes under P: u → −u. We define time
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reversal T by t → −t , and again, since u is a velocity, the sign of u also changes under T :
u → −u. Following the quantum-mechanical formalism, we also require that i → −i under
time reversal. Note that under PT reflection the function u remains invariant because we are
treating the function u here in analogy with the momentum operator p in quantum mechanics.
There may be other transformations that do not leave u invariant, but we do not consider such
transformations in this paper. Also note that if a function f (x) is invariant under PT reflection
then f is a function of ix and if a function g(t) is invariant under PT reflection then g(t) is
an even function of t. The situation is more complicated for functions of the form u(x, t). For
example u(x, t) = ix + xt + t2 is PT symmetric while u(x, t) = x is not. In analogy with
quantum mechanics we always treat x and t as real variables.

It is clear that the KdV equation is not symmetric under P or T separately, but it
is symmetric under combined PT reflection. The KdV equation is a special case of the
Camassa–Holm equation [8], which is also PT symmetric. Other nonlinear wave equations
such as the generalized KdV equation ut + ukux + uxxx = 0 and the sine-Gordon equation
utt − uxx + g sin u = 0 are PT symmetric as well.

The striking observation that there are many nonlinear wave equations possessing PT
symmetry suggests that one can generate many families of new complex nonlinear PT -
symmetric wave equations by following the same procedure that was used in quantum
mechanics (see (1)). One should then try to discover which properties of the original wave
equations are preserved5.

In this brief communication we limit our discussion to the complex PT -symmetric
extension of the KdV equation:

ut − iu(iux)
ε + uxxx = 0, (3)

where ε is a real parameter. We now examine the remarkable properties of some members
of this family of complex PT -symmetric equations. We will emphasize the properties that
members of this class have in common.

Case ε = 1. When ε = 1, (3) reduces to the KdV equation (2). The KdV equation has an
infinite number of conserved quantities [9]. The first two are the momentum P,

d

dt
P = 0, P =

∫
dx u(x, t), (4)

and the energy E,

d

dt
E = 0, E = 1

2

∫
dx[u(x, t)]2. (5)

The Cauchy initial-value problem for the KdV equation can be solved exactly because the
system is integrable, and it is solved by using the method of inverse scattering [10].

A solitary-wave solution to the KdV equation has the form

u(x, t) = 3c sech2
[

1
2

√
c (x − ct − x0)

]
, (6)

where c > 0 is the velocity. (In general, a solitary-wave solution u(x, t) = f (x − ct) to
a partial differential equation is defined to be a wave that propagates at constant velocity c
and whose shape does not change in time. In this paper, we also require that f (z) → 0 as
|z| → ∞.) These solitary waves are called solitons because as they evolve according to the
KdV equation they retain their shape when they undergo collisions with other solitary waves.
One can observe numerically how a soliton emerges from a pulse-like initial condition. For

5 An alternative possibility for study is to examine inverse scattering problems and isospectral flow using PT -
symmetric potentials u(x, t). We reserve this research direction for a future paper.
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Figure 1. Birth of a soliton. As the initial condition u(x, 0) = 3 sech(x) evolves in time according
to the KdV equation, a soliton of the form (6) moves to the right leaving a trail of residual radiation
that propagates to the left. The function u(x, T ) is plotted for T = 0, 0.8, 3.5, 7 and 14.

example, for the initial condition u(x, 0) = 3sech(x), we see in figure 1 that the pulse sheds
a stream of wave-like radiation that travels to the left and gives birth to a right-moving soliton
of the form in (6).

Case ε = 0. Setting ε = 0 in (3) gives the linear equation

ut − iu + uxxx = 0. (7)

To solve the initial-value problem for this equation, we substitute u(x, t) = eit v(x, t) and
reduce it to vt + vxxx = 0. We then perform a Fourier transform to obtain the solution in the
form of a convolution of the initial condition and an inverse Fourier transform:

v(x, t) = v(x, 0) ∗ F−1
(
eip3t

)
. (8)

The inverse Fourier transform of the exponential of a cubic is an Airy function [11]. Thus, the
exact solution for u(x, t) is

u(x, t) = eit (3t)−1/3
∫ ∞

−∞
ds u(x − s, 0)Ai[(3t)−1/3s]. (9)

The Airy function Ai(x) has a global maximum near x = 0. For x large and positive Ai(x)

decays exponentially, Ai(x) ∼ (2
√

π)−1x−1/4 exp
(− 2

3x3/2
)
, and for x large and negative

Ai(x) decays algebraically and oscillates, Ai(−x) ∼ π−1/2x−1/4 sin
(

2
3x3/2 + 1

4π
)
. Thus, the

qualitative behaviour of Ai(x) resembles that in figure 1. If we choose the initial condition
u(x, 0) = 3sech(x) that was used to generate figure 1, then apart from the phase eit we find
that the solution (9), which is shown in figure 2, resembles that for the KdV equation in figure 1
except that no soliton emerges from the initial condition. There is only residual radiation that
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Figure 2. Plot of u(x, T ) e−iT as a function of x for T = 0, 5, 10, 20, 40 and 80, where u(x, t)

in (9) is calculated for the initial condition u(x, 0) = 3 sech(x). A comparison of this figure with
figure 1 shows that the solutions to (3) with ε = 0 and ε = 1 are somewhat similar. However, in
this case, while the initial condition produces radiation that travels to the left, it does not give rise
to a soliton.

travels to the left. Thus, we have extended the KdV equation into the complex domain while
preserving many of its qualitative features.

Case ε = 3. If we set ε = 3 in (3), we obtain the nonlinear wave equation

ut − u(ux)
3 + uxxx = 0, (10)

which has received only passing mention in the literature [12, 13]. The only observations that
have been made regarding this equation are that, apart from translation invariance in x and t,
there is an obvious scaling solution of the form u(x, t) = φ(xt−1/3). Yet, this equation has an
array of rich and beautiful properties that have so far been overlooked. As we will show, there
are two conserved quantities, a momentum P and an energy E, which are the analogues of
P and E in (4) and (5) for the KdV equation. We will also show that there are travelling waves,
and we will see how a pulse-like initial condition gives birth to a travelling wave, just as in the
case of the KdV equation.

We derive the conserved quantities for the wave equation (10) in much the same way that
one finds the conserved quantities for the KdV equation (2). However, the procedure is more
elaborate. To find the momentum P, we begin by integrating (10) with respect to x and assume
that u(x, t) vanishes rapidly as |x| → ∞. For the case of the KdV equation, this procedure
immediately gives the result in (4). However, for the equation in (10) we have the result

d

dt

∫
dx u =

∫
dx u(ux)

3. (11)

Evidently,
∫

dx u is not a conserved quantity because the right-hand side of this equation
does not vanish (in contrast to the KdV equation). To proceed we use the identity∫

dx uN(ux)
3 = 2

(N + 1)(N + 2)

∫
dx uN+2uxxx, (12)

which is obtained by performing two integrations by parts. Using this identity for the case
N = 1, we rewrite (11) as

d

dt

∫
dx u = 1

3

∫
dx u3uxxx. (13)
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This equation suggests that we should multiply (10) by u3, integrate with respect to x and use
the identity (12) for the case N = 4 to obtain

1

4

d

dt

∫
dx u4 = 1

15

∫
dx u6uxxx −

∫
dx u3uxxx. (14)

We can combine (13) and (14) to eliminate the
∫

u3uxxx term, but the right-hand side will still
not vanish because there will be a

∫
u6uxxx term.

Therefore, we must iterate this process by multiplying by u6, u9, u12 and so on, and then
integrating with respect to x. We thus obtain the following sequence of equations:

d

dt

∫
dx

u3k+1

3k + 1
=

∫
dx

2u3k+3uxxx

(3k + 2)(3k + 3)
−

∫
dx u3kuxxx, (15)

where k = 0, 1, 2, 3, . . . . We can now completely eliminate the right-hand side if we multiply
the kth equation in (15) by

ak = 6k�
(
k + 1

3

)
(3k)!

A, (16)

where A is an arbitrary constant, and sum from k = 0 to ∞. We conclude that d
dt

P = 0,
where the conserved quantity P is given by

P = A

∫
dx

∞∑
k=0

6k�
(
k + 1

3

)
u3k+1

(3k + 1)!
. (17)

By a similar argument, we can construct a second conserved quantity E, d
dt

E = 0, where
E is given by

E = B

∫
dx

∞∑
k=0

6k�
(
k + 2

3

)
u3k+2

(3k + 2)!
(18)

and B is an arbitrary constant.
The summations in (17) and (18) can be performed in closed form in terms of Airy

functions, giving

P =
∫

dx

∫ 21/3u(x,t)

0
ds[Bi(s) +

√
3Ai(s)],

E =
∫

dx

∫ 21/3u(x,t)

0
ds[Bi(s) −

√
3Ai(s)],

(19)

where we have taken A = 61/3/π and B = 62/3/π . It is especially noteworthy that the
conserved quantity E is strictly positive when u(x, t) is not identically 0, and thus it is
reasonable to interpret E as an energy. The positivity property of the energy is maintained
when ε changes from 1 (the KdV equation) to 3. We do not believe that (10) has more than
two conserved quantities.

Equation (10) is also similar to the KdV equation in that it has solitary-wave solutions.
To construct such a solution, we substitute u(x, t) = f (x − ct) into (10) to find the ordinary
differential equation satisfied by f (z):

−cf ′(z) − f (z)[f ′(z)]3 + f ′′′(z) = 0. (20)

It is only possible to solve this autonomous equation in implicit form. To do so, we seek a
solution of the form f ′(z) = G(f ). The function G satisfies

−2c − 2f G2(f ) + [G2(f )]′′ = 0. (21)
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Figure 3. Solitary-wave solution to the differential equation ut − u(ux)3 + uxxx = 0. This
negative-pulse solution has the form u(x, t) = f (x − ct), where we have taken c = 1. The
solitary wave is an even function of z = x − t and it decays like e−|z| for large |z|. Thus, it closely
resembles the solitary-wave solution in (6) for the KdV equation. At the negative peak the height
of this solitary wave is −2.73802.

Making the further substitution H(f ) = G2(f ), we find that H satisfies

H ′′(f ) − 2f H(f ) = 2c, (22)

which is the inhomogeneous Airy equation, whose solution is expressed in terms of the
inhomogeneous Airy or Scorer function Hi [11].

Unfortunately, because the solution to (20) is implicit, it is not easy to determine
immediately whether there are solitary-wave solutions (solutions f (z) that vanish as |z| → ∞).
However, numerical analysis confirms that there are indeed such solutions. In figure 3, we
have plotted the solitary wave for c = 1. Note that this wave is an even function of z and it
decays like e−|z| for large |z|. Also note that the solitary-wave solution is a negative pulse,
rather than a positive pulse as with the KdV equation.

As we saw in figure 1 for the KdV equation, a negative initial pulse such as u(x, 0) =
−3 sech(x) for (10) gives birth to a solitary wave. As shown in figure 4, this initial pulse emits
radiation that travels to the left and evolves into a right-going solitary wave (see figure 3).
Computer experiments suggest that these solitary waves are not solitons; that is, they do
not maintain their shape after a collision with another solitary wave. Indeed, we would be
surprised if (10) were an integrable system. The quantum-mechanical Hamiltonian (1) ceases
to be exactly solvable when ε �= 0, and in the same vein we expect that (3) is not integrable
when ε �= 0, 1.

There are no positive solitary-wave solutions to (10). As we see in figure 5, a positive
initial pulse of the form u(x, 0) = 3 sech(x) generates a stream of radiation that travels to the
left, but it does not give rise to a solitary wave.

Case ε = 2n + 1. When ε = 2n + 1 is an odd integer, the nonlinear wave equation in (3) is
real:

ut + (−1)nu(ux)
2n+1 + uxxx = 0. (23)

For all values of n there are solitary waves u(x, t) = f (z), where z = x − ct , and these waves
are even functions of z. As n increases, the solitary waves alternate between being strictly
positive and strictly negative functions and they gradually become wider (see figure 6).
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Figure 4. Birth of a solitary wave. As the initial condition u(x, 0) = −3 sech(x) evolves in time
according to ut − u(ux)3 + uxxx = 0, a pulse that approaches the shape of a solitary wave moves
to the right leaving a trail of residual radiation that propagates to the left. The wave u(x, T ) is
shown for the times T = 0.05, 0.25, 0.55, 1, and 2.

Figure 5. The solution to ut − u(ux)3 + uxxx = 0 that evolves from the initial condition
u(x, 0) = 3 sech(x). This initial condition generates radiation that travels to the left, but it does
not give rise to a solitary wave. The wave u(x, T ) is shown for the times T = 0, 6, 12, and 19.

In conclusion, we have shown how to extend the conventional KdV equation into the
complex domain while preserving PT symmetry. The result is a large and rich class of
nonlinear wave equations that share many of the properties of the KdV equation. In particular,
we find that for some values of ε there are conservation laws and solitary waves, and that
arbitrary initial pulses can evolve into solitary waves after they give off a stream of radiation.
Airy functions appear repeatedly in the analysis because the associated linear equation that is
satisfied when u(x, t) is small is of Airy type.
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Figure 6. Solitary-wave solutions of the form f (x − t) to the differential equation ut +
(−1)nu(ux)2n+1 + uxxx = 0 for n = 1, 2, 3, 4. Note that the solutions are alternately positive
and negative and gradually get wider as n increases. At the stationary points the heights of the
waves are −2.73802 (n = 1), 2.45839 (n = 2), −2.30305 (n = 3), and 2.20797 (n = 4). The
widths of the waves at half-height are 3.15, 3.14, 3.19, and 3.26, respectively.

There are many ways to continue this line of research. For example, one can study (3)
for other values of ε and one can even expand in powers of ε. Also, one can begin with other
PT -symmetric nonlinear wave equations, such as the Camassa–Holm or the generalized KdV
equations, and investigate the properties of the resulting new complex wave equations. These
new kinds of nonlinear wave equations have a rich complex structure that deserves further
study.
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